/* Copyright (C) 2024 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see .
*/
#include "precompiled.h"
#include "TexturedLineRData.h"
#include "graphics/ShaderProgram.h"
#include "graphics/Terrain.h"
#include "maths/Frustum.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "ps/CStrInternStatic.h"
#include "renderer/OverlayRenderer.h"
#include "renderer/Renderer.h"
#include "simulation2/Simulation2.h"
#include "simulation2/system/SimContext.h"
#include "simulation2/components/ICmpWaterManager.h"
/* Note: this implementation uses CVertexBufferManager directly rather than access it through the nicer VertexArray interface,
* because it allows you to work with variable amounts of vertices and indices more easily. New code should prefer
* to use VertexArray where possible, though. */
// static
Renderer::Backend::IVertexInputLayout* CTexturedLineRData::GetVertexInputLayout()
{
const uint32_t stride = sizeof(CTexturedLineRData::SVertex);
const std::array attributes{{
{Renderer::Backend::VertexAttributeStream::POSITION,
Renderer::Backend::Format::R32G32B32_SFLOAT,
offsetof(CTexturedLineRData::SVertex, m_Position), stride,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0},
{Renderer::Backend::VertexAttributeStream::UV0,
Renderer::Backend::Format::R32G32_SFLOAT,
offsetof(CTexturedLineRData::SVertex, m_UV), stride,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0},
{Renderer::Backend::VertexAttributeStream::UV1,
Renderer::Backend::Format::R32G32_SFLOAT,
offsetof(CTexturedLineRData::SVertex, m_UV), stride,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}
}};
return g_Renderer.GetVertexInputLayout(attributes);
}
void CTexturedLineRData::Render(
Renderer::Backend::IDeviceCommandContext* deviceCommandContext,
Renderer::Backend::IVertexInputLayout* vertexInputLayout,
const SOverlayTexturedLine& line, Renderer::Backend::IShaderProgram* shader)
{
if (!m_VB || !m_VBIndices)
return; // might have failed to allocate
// -- render main line quad strip ----------------------
line.m_TextureBase->UploadBackendTextureIfNeeded(deviceCommandContext);
line.m_TextureMask->UploadBackendTextureIfNeeded(deviceCommandContext);
ENSURE(!m_VB->m_Owner->GetBuffer()->IsDynamic());
ENSURE(!m_VBIndices->m_Owner->GetBuffer()->IsDynamic());
deviceCommandContext->SetTexture(
shader->GetBindingSlot(str_baseTex), line.m_TextureBase->GetBackendTexture());
deviceCommandContext->SetTexture(
shader->GetBindingSlot(str_maskTex), line.m_TextureMask->GetBackendTexture());
deviceCommandContext->SetUniform(
shader->GetBindingSlot(str_objectColor), line.m_Color.AsFloatArray());
deviceCommandContext->SetVertexInputLayout(vertexInputLayout);
deviceCommandContext->SetVertexBuffer(0, m_VB->m_Owner->GetBuffer(), 0);
deviceCommandContext->SetIndexBuffer(m_VBIndices->m_Owner->GetBuffer());
deviceCommandContext->DrawIndexed(m_VBIndices->m_Index, m_VBIndices->m_Count, 0);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += m_VBIndices->m_Count/3;
}
void CTexturedLineRData::Update(const SOverlayTexturedLine& line)
{
m_VBIndices.Reset();
m_VB.Reset();
if (!line.m_SimContext)
{
debug_warn(L"[TexturedLineRData] No SimContext set for textured overlay line, cannot render (no terrain data)");
return;
}
float v = 0.f;
std::vector vertices;
std::vector indices;
const size_t n = line.m_Coords.size(); // number of line points
bool closed = line.m_Closed;
ENSURE(n >= 2); // minimum needed to avoid errors (also minimum value to make sense, can't draw a line between 1 point)
// In each iteration, p1 is the position of vertex i, p0 is i-1, p2 is i+1.
// To avoid slightly expensive terrain computations we cycle these around and
// recompute p2 at the end of each iteration.
CVector3D p0;
CVector3D p1(line.m_Coords[0].X, 0, line.m_Coords[0].Y);
CVector3D p2(line.m_Coords[1].X, 0, line.m_Coords[1].Y);
if (closed)
// grab the ending point so as to close the loop
p0 = CVector3D(line.m_Coords[n - 1].X, 0, line.m_Coords[n - 1].Y);
else
// we don't want to loop around and use the direction towards the other end of the line, so create an artificial p0 that
// extends the p2 -> p1 direction, and use that point instead
p0 = p1 + (p1 - p2);
bool p1floating = false;
bool p2floating = false;
// Compute terrain heights, clamped to the water height (and remember whether
// each point was floating on water, for normal computation later)
// TODO: if we ever support more than one water level per map, recompute this per point
CmpPtr cmpWaterManager(*line.m_SimContext, SYSTEM_ENTITY);
float w = cmpWaterManager ? cmpWaterManager->GetExactWaterLevel(p0.X, p0.Z) : 0.f;
const CTerrain& terrain = line.m_SimContext->GetTerrain();
p0.Y = terrain.GetExactGroundLevel(p0.X, p0.Z);
if (p0.Y < w)
p0.Y = w;
p1.Y = terrain.GetExactGroundLevel(p1.X, p1.Z);
if (p1.Y < w)
{
p1.Y = w;
p1floating = true;
}
p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
for (size_t i = 0; i < n; ++i)
{
// For vertex i, compute bisector of lines (i-1)..(i) and (i)..(i+1)
// perpendicular to terrain normal
// Normal is vertical if on water, else computed from terrain
CVector3D norm;
if (p1floating)
norm = CVector3D(0, 1, 0);
else
norm = terrain.CalcExactNormal(p1.X, p1.Z);
CVector3D b = ((p1 - p0).Normalized() + (p2 - p1).Normalized()).Cross(norm);
// Adjust bisector length to match the line thickness, along the line's width
float l = b.Dot((p2 - p1).Normalized().Cross(norm));
if (fabs(l) > 0.000001f) // avoid unlikely divide-by-zero
b *= line.m_Thickness / l;
// Push vertices and indices for each quad in GL_TRIANGLES order. The two triangles of each quad are indexed using
// the winding orders (BR, BL, TR) and (TR, BL, TL) (where BR is bottom-right of this iteration's quad, TR top-right etc).
SVertex vertex1(p1 + b + norm * OverlayRenderer::OVERLAY_VOFFSET, CVector2D(0.f, v));
SVertex vertex2(p1 - b + norm * OverlayRenderer::OVERLAY_VOFFSET, CVector2D(1.f, v));
vertices.push_back(vertex1);
vertices.push_back(vertex2);
u16 vertexCount = static_cast(vertices.size());
u16 index1 = vertexCount - 2; // index of vertex1 in this iteration (TR of this quad)
u16 index2 = vertexCount - 1; // index of the vertex2 in this iteration (TL of this quad)
if (i == 0)
{
// initial two vertices to continue building triangles from (n must be >= 2 for this to work)
indices.push_back(index1);
indices.push_back(index2);
}
else
{
u16 index1Prev = vertexCount - 4; // index of the vertex1 in the previous iteration (BR of this quad)
u16 index2Prev = vertexCount - 3; // index of the vertex2 in the previous iteration (BL of this quad)
ENSURE(index1Prev < vertexCount);
ENSURE(index2Prev < vertexCount);
// Add two corner points from last iteration and join with one of our own corners to create triangle 1
// (don't need to do this if i == 1 because i == 0 are the first two ones, they don't need to be copied)
if (i > 1)
{
indices.push_back(index1Prev);
indices.push_back(index2Prev);
}
indices.push_back(index1); // complete triangle 1
// create triangle 2, specifying the adjacent side's vertices in the opposite order from triangle 1
indices.push_back(index1);
indices.push_back(index2Prev);
indices.push_back(index2);
}
// alternate V coordinate for debugging
v = 1 - v;
// cycle the p's and compute the new p2
p0 = p1;
p1 = p2;
p1floating = p2floating;
// if in closed mode, wrap around the coordinate array for p2 -- otherwise, extend linearly
if (!closed && i == n-2)
// next iteration is the last point of the line, so create an artificial p2 that extends the p0 -> p1 direction
p2 = p1 + (p1 - p0);
else
p2 = CVector3D(line.m_Coords[(i + 2) % n].X, 0, line.m_Coords[(i + 2) % n].Y);
p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
else
p2floating = false;
}
if (closed)
{
// close the path
if (n % 2 == 0)
{
u16 vertexCount = static_cast(vertices.size());
indices.push_back(vertexCount - 2);
indices.push_back(vertexCount - 1);
indices.push_back(0);
indices.push_back(0);
indices.push_back(vertexCount - 1);
indices.push_back(1);
}
else
{
// add two vertices to have the good UVs for the last quad
SVertex vertex1(vertices[0].m_Position, CVector2D(0.f, 1.f));
SVertex vertex2(vertices[1].m_Position, CVector2D(1.f, 1.f));
vertices.push_back(vertex1);
vertices.push_back(vertex2);
u16 vertexCount = static_cast(vertices.size());
indices.push_back(vertexCount - 4);
indices.push_back(vertexCount - 3);
indices.push_back(vertexCount - 2);
indices.push_back(vertexCount - 2);
indices.push_back(vertexCount - 3);
indices.push_back(vertexCount - 1);
}
}
else
{
// Create start and end caps. On either end, this is done by taking the centroid between the last and second-to-last pair of
// vertices that was generated along the path (i.e. the vertex1's and vertex2's from above), taking a directional vector
// between them, and drawing the line cap in the plane given by the two butt-end corner points plus said vector.
std::vector capIndices;
std::vector capVertices;
// create end cap
CreateLineCap(
line,
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[vertices.size()-2].m_Position, // top-right vertex of last quad
vertices[vertices.size()-1].m_Position, // top-left vertex of last quad
// directional vector between centroids of last vertex pair and second-to-last vertex pair
(Centroid(vertices[vertices.size()-2], vertices[vertices.size()-1]) - Centroid(vertices[vertices.size()-4], vertices[vertices.size()-3])).Normalized(),
line.m_EndCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += static_cast(vertices.size());
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
capIndices.clear();
capVertices.clear();
// create start cap
CreateLineCap(
line,
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[1].m_Position,
vertices[0].m_Position,
// directional vector between centroids of first vertex pair and second vertex pair
(Centroid(vertices[1], vertices[0]) - Centroid(vertices[3], vertices[2])).Normalized(),
line.m_StartCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += static_cast(vertices.size());
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
}
if (vertices.empty() || indices.empty())
return;
// Indices for triangles, so must be multiple of 3.
ENSURE(indices.size() % 3 == 0);
m_BoundingBox = CBoundingBoxAligned();
for (const SVertex& vertex : vertices)
m_BoundingBox += vertex.m_Position;
m_VB = g_Renderer.GetVertexBufferManager().AllocateChunk(
sizeof(SVertex), vertices.size(), Renderer::Backend::IBuffer::Type::VERTEX,
Renderer::Backend::IBuffer::Usage::TRANSFER_DST);
// Allocation might fail (e.g. due to too many vertices).
if (m_VB)
{
// Copy data into backend buffer.
m_VB->m_Owner->UpdateChunkVertices(m_VB.Get(), &vertices[0]);
for (size_t k = 0; k < indices.size(); ++k)
indices[k] += static_cast(m_VB->m_Index);
m_VBIndices = g_Renderer.GetVertexBufferManager().AllocateChunk(
sizeof(u16), indices.size(), Renderer::Backend::IBuffer::Type::INDEX,
Renderer::Backend::IBuffer::Usage::TRANSFER_DST);
if (m_VBIndices)
m_VBIndices->m_Owner->UpdateChunkVertices(m_VBIndices.Get(), &indices[0]);
}
}
void CTexturedLineRData::CreateLineCap(const SOverlayTexturedLine& line, const CVector3D& corner1, const CVector3D& corner2,
const CVector3D& lineDirectionNormal, SOverlayTexturedLine::LineCapType endCapType, std::vector& verticesOut,
std::vector& indicesOut)
{
if (endCapType == SOverlayTexturedLine::LINECAP_FLAT)
return; // no action needed, this is the default
// When not in closed mode, we've created artificial points for the start- and endpoints that extend the line in the
// direction of the first and the last segment, respectively. Thus, we know both the start and endpoints have perpendicular
// butt endings, i.e. the end corner vertices on either side of the line extend perpendicularly from the segment direction.
// That is to say, when viewed from the top, we will have something like
// .
// this: and not like this: /|
// ----+ / |
// | / .
// | /
// ----+ /
//
int roundCapPoints = 8; // amount of points to sample along the semicircle for rounded caps (including corner points)
float radius = line.m_Thickness;
CVector3D centerPoint = (corner1 + corner2) * 0.5f;
SVertex centerVertex(centerPoint, CVector2D(0.5f, 0.5f));
u16 indexOffset = static_cast(verticesOut.size()); // index offset in verticesOut from where we start adding our vertices
switch (endCapType)
{
case SOverlayTexturedLine::LINECAP_SHARP:
{
roundCapPoints = 3; // creates only one point directly ahead
radius *= 1.5f; // make it a bit sharper (note that we don't use the radius for the butt-end corner points so it should be ok)
centerVertex.m_UV.X = 0.480f; // slight visual correction to make the texture match up better at the corner points
}
FALLTHROUGH;
case SOverlayTexturedLine::LINECAP_ROUND:
{
// Draw a rounded line cap in the 3D plane of the line specified by the two corner points and the normal vector of the
// line's direction. The terrain normal at the centroid between the two corner points is perpendicular to this plane.
// The way this works is by taking a vector from the corner points' centroid to one of the corner points (which is then
// of radius length), and rotate it around the terrain normal vector in that centroid. This will rotate the vector in
// the line's plane, producing the desired rounded cap.
// To please OpenGL's winding order, this angle needs to be negated depending on whether we start rotating from
// the (center -> corner1) or (center -> corner2) vector. For the (center -> corner2) vector, we apparently need to use
// the negated angle.
float stepAngle = -(float)(M_PI/(roundCapPoints-1));
// Push the vertices in triangle fan order (easy to generate GL_TRIANGLES indices for afterwards)
// Note that we're manually adding the corner vertices instead of having them be generated by the rotating vector.
// This is because we want to support an overly large radius to make the sharp line ending look sharper.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, CVector2D()));
// Get the base vector that we will incrementally rotate in the cap plane to produce the radial sample points.
// Normally corner2 - centerPoint would suffice for this since it is of radius length, but we want to support custom
// radii to support tuning the 'sharpness' of sharp end caps (see above)
CVector3D rotationBaseVector = (corner2 - centerPoint).Normalized() * radius;
// Calculate the normal vector of the plane in which we're going to be drawing the line cap. This is the vector that
// is perpendicular to both baseVector and the 'lineDirectionNormal' vector indicating the direction of the line.
// Note that we shouldn't use terrain->CalcExactNormal() here because if the line is being rendered on top of water,
// then CalcExactNormal will return the normal vector of the terrain that's underwater (which can be quite funky).
CVector3D capPlaneNormal = lineDirectionNormal.Cross(rotationBaseVector).Normalized();
for (int i = 1; i < roundCapPoints - 1; ++i)
{
// Rotate the centerPoint -> corner vector by i*stepAngle radians around the cap plane normal at the center point.
CQuaternion quatRotation;
quatRotation.FromAxisAngle(capPlaneNormal, i * stepAngle);
CVector3D worldPos3D = centerPoint + quatRotation.Rotate(rotationBaseVector);
// Let v range from 0 to 1 as we move along the semi-circle, keep u fixed at 0 (i.e. curve the left vertical edge
// of the texture around the edge of the semicircle)
float u = 0.f;
float v = Clamp((i / static_cast(roundCapPoints - 1)), 0.f, 1.f); // pos, u, v
verticesOut.push_back(SVertex(worldPos3D, CVector2D(u, v)));
}
// connect back to the other butt-end corner point to complete the semicircle
verticesOut.push_back(SVertex(corner1, CVector2D(0.f, 1.f)));
// now push indices in GL_TRIANGLES order; vertices[indexOffset] is the center vertex, vertices[indexOffset + 1] is the
// first corner point, then a bunch of radial samples, and then at the end we have the other corner point again. So:
for (int i=1; i < roundCapPoints; ++i)
{
indicesOut.push_back(indexOffset); // center vertex
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
case SOverlayTexturedLine::LINECAP_SQUARE:
{
// Extend the (corner1 -> corner2) vector along the direction normal and draw a square line ending consisting of
// three triangles (sort of like a triangle fan)
// NOTE: The order in which the vertices are pushed out determines the visibility, as they
// are rendered only one-sided; the wrong order of vertices will make the cap visible only from the bottom.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, CVector2D()));
verticesOut.push_back(SVertex(corner2 + (lineDirectionNormal * (line.m_Thickness)), CVector2D(0.f, 0.33333f))); // extend butt corner point 2 along the normal vector
verticesOut.push_back(SVertex(corner1 + (lineDirectionNormal * (line.m_Thickness)), CVector2D(0.f, 0.66666f))); // extend butt corner point 1 along the normal vector
verticesOut.push_back(SVertex(corner1, CVector2D(0.f, 1.0f))); // push butt corner point 1
for (int i=1; i < 4; ++i)
{
indicesOut.push_back(indexOffset); // center point
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
default:
break;
}
}
bool CTexturedLineRData::IsVisibleInFrustum(const CFrustum& frustum) const
{
return frustum.IsBoxVisible(m_BoundingBox);
}