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1 Definitions

A ray is defined as a collection of points r(t) such that:

r(t) = o + td

where o denotes the origin of the ray, d is a unit vector indicating the direction of the ray, and t is an
independent scalar parameter that specifies the distance of r(t) from the origin of the ray. Points that
are generated by negative values of t are said to lie behind the ray origin, and are not considered part of
the ray.

An OBB, or Oriented Bounding Box, is an arbitarily-rotated three-dimensional rectangular cuboid de-
fined by a center point ac, a set of mutually orthonormal basis vectors (au, av, aw), and the half-distances
(hu, hv, hw) of each face from the origin along their respective axes.

2 Method

In 0 A.D., rays are tested for intersection with OBBs using the slab method as outlined in [1]. In brief, the
goal of the algorithm is to compute the distances from the ray’s origin to its intersection points with each
of three slabs (one for each dimension). By then performing a clever comparison of these intersection
point distances, it is able to determine whether the ray hits or misses the shape.

This document is concerned with providing some details of how these distances are computed, in order
to allow the reader to more thoroughly comprehend the algorithm. Before continuing, the reader should
have the algorithm as it appears in [1] at hand. For the most part, the same variable names will be used
here.

Figure 1 presents a visual illustration of a sample 2D case, for one particular slab. The points t1 and t2
are the intersection points of the ray with the slab. The goal is to determine the distances between o and
these points in the general case. Observe that each basis vector ai corresponds to a slab of which it is the
normal vector.

As in the algorithm, in what follows, let:

f ∆
= ai · d = cos θ

e ∆
= ai · p

Both ai and d are unit vectors; therefore by definition of the dot product, f = cos θ where θ is the angle
between the two; i.e., the ray direction and the slab normal. The scalar e is the distance between o and
the center of the box ac, projected onto the slab normal ai.

In a right-angled triangle, per definition of the cosine, the hypotenuse’s length is cos θ times the length
of the adjacent side:
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Figure 1: A visual representation of how the distances between o and t1 and t2 are computed in the two-dimensional
case, for a generic slab i ∈ {u, v} with normal vector ai and half-size hi.
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Thus, looking at the right-angled triangles ∆oq1t1 and ∆oq2t2 in Figure 1, we find that:

||o − t1|| =
e − hi
cos θ

||o − t2|| =
e + hi
cos θ

3 Degenerate cases

It’s prudent to consider what happens for the degenerate case of testing a ray for intersections against
an OBB that has no size in one or more dimensions. Figure 2 depicts the degenerate variant of the 2D
case seen earlier, where the box now has a null size in the u dimension.

In the method seen above, the only prerequisites to computing the distances between the ray origin and
its intersection points with the slab are cos θ and e ± hi. In the degenerate case, hu is 0, and so both
intersection points will be correctly found at e/ cos θ. None of the other terms depend upon the size of
the box along the dimension at hand, and hence remain unaffected. However, they do depend on the
degenerate dimension’s normal vector remaining well-defined and non-null.
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Figure 2: Degenerate 2D case with null size in the u dimension.
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