#include #include #include "premake.h" #define HASH_LENGTH 20 #define BLOCK_LENGTH 64 typedef struct sha1nfo { uint32_t buffer[BLOCK_LENGTH / 4]; uint32_t state[HASH_LENGTH / 4]; uint32_t byteCount; uint8_t bufferOffset; uint8_t keyBuffer[BLOCK_LENGTH]; uint8_t innerHash[HASH_LENGTH]; } sha1nfo; /* public API - prototypes - TODO: doxygen*/ void sha1_init(sha1nfo *s); void sha1_writebyte(sha1nfo *s, uint8_t data); void sha1_write(sha1nfo *s, const char *data, size_t len); uint8_t* sha1_result(sha1nfo *s); /* code */ #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 void sha1_init(sha1nfo *s) { s->state[0] = 0x67452301; s->state[1] = 0xefcdab89; s->state[2] = 0x98badcfe; s->state[3] = 0x10325476; s->state[4] = 0xc3d2e1f0; s->byteCount = 0; s->bufferOffset = 0; } uint32_t sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32 - bits))); } void sha1_hashBlock(sha1nfo *s) { uint8_t i; uint32_t a, b, c, d, e, t; a = s->state[0]; b = s->state[1]; c = s->state[2]; d = s->state[3]; e = s->state[4]; for (i = 0; i < 80; i++) { if (i >= 16) { t = s->buffer[(i + 13) & 15] ^ s->buffer[(i + 8) & 15] ^ s->buffer[(i + 2) & 15] ^ s->buffer[i & 15]; s->buffer[i & 15] = sha1_rol32(t, 1); } if (i < 20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i < 40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i < 60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t += sha1_rol32(a, 5) + e + s->buffer[i & 15]; e = d; d = c; c = sha1_rol32(b, 30); b = a; a = t; } s->state[0] += a; s->state[1] += b; s->state[2] += c; s->state[3] += d; s->state[4] += e; } void sha1_addUncounted(sha1nfo *s, uint8_t data) { uint8_t * const b = (uint8_t*)s->buffer; b[s->bufferOffset ^ 3] = data; s->bufferOffset++; if (s->bufferOffset == BLOCK_LENGTH) { sha1_hashBlock(s); s->bufferOffset = 0; } } void sha1_writebyte(sha1nfo *s, uint8_t data) { ++s->byteCount; sha1_addUncounted(s, data); } void sha1_write(sha1nfo *s, const char *data, size_t len) { for (; len--;) sha1_writebyte(s, (uint8_t)*data++); } void sha1_pad(sha1nfo *s) { // Implement SHA-1 padding (fips180-2 ยง5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block sha1_addUncounted(s, 0x80); while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00); // Append length in the last 8 bytes sha1_addUncounted(s, 0); // We're only using 32 bit lengths sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths sha1_addUncounted(s, 0); // So zero pad the top bits sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8 sha1_addUncounted(s, (uint8_t)(s->byteCount >> 21)); // as SHA-1 supports bitstreams as well as sha1_addUncounted(s, (uint8_t)(s->byteCount >> 13)); // byte. sha1_addUncounted(s, (uint8_t)(s->byteCount >> 5)); sha1_addUncounted(s, (uint8_t)(s->byteCount << 3)); } uint8_t* sha1_result(sha1nfo *s) { int i; // Pad to complete the last block sha1_pad(s); // Swap byte order back for (i = 0; i < 5; i++) { s->state[i] = (((s->state[i]) << 24) & 0xff000000) | (((s->state[i]) << 8) & 0x00ff0000) | (((s->state[i]) >> 8) & 0x0000ff00) | (((s->state[i]) >> 24) & 0x000000ff); } // Return pointer to hash (20 characters) return (uint8_t*)s->state; } int string_sha1(lua_State* L) { static const char* g_int2hex = "0123456789ABCDEF"; uint8_t* result; size_t l; sha1nfo s; int i; char output[41]; const char *str = luaL_checklstring(L, 1, &l); if (str != NULL) { sha1_init(&s); sha1_write(&s, str, l); result = sha1_result(&s); for (i = 0; i < 20; ++i) { output[i * 2 + 0] = g_int2hex[result[i] & 0x0f]; output[i * 2 + 1] = g_int2hex[result[i] >> 4]; } output[40] = 0; lua_pushlstring(L, output, 40); return 1; } return 0; }